Abbildungen der Seite
PDF
EPUB

another, before they could be permitted to enter into the bodies of those beings who were to be in God's likeness. But, in very truth, the elements were unaltered by their many transmigrations. It was the divine act of God which caused every plant to spring forth and gave birth to every living thing. Every seed and every egg was at the first formed by Him. No sudden effort of man's will, such as that by which Pygmalion was believed to have animated the work of his chisel, nor any industrious current of electricity, passed for uninterrupted weeks through the purest gum, and stimulated by the enthusiasm of a Cross, can transform the worm to a breathing being, or reach the human climax by slow steps, even if the first one be in the humble form of a louse. When a new plant appeared, it was the hand of God that formed the seed. When a new species of animal came upon the earth, it was the same Power that created it. But the materials were not new; "out of the dust of the earth" was man created.

Oxygen, Hydrogen, Carbon, and Nitrogen, do not turn away from us, gentle reader, we will not be grimly scientif ic, but a few of the terms of science must be employed, even here,-these four elements are the chief ingredients of all vegetable and animal structures. When separated from their connections, three of them are gases; and the fourth, in union with one of the others, is also a gas. In various combinations they form literally the dust of the earth, they make rock and water, vapor and air. In the hand of the Almighty, they are so many plastic elements, that form now a plant of the lowliest condition, now a magnificent oak, now a fish, and now a man. And the germ of each organized being bequeathes to its offspring the power to reproduce its likeness,-so that each succeeding generation is a repetition of its predecessor. There is no change in plants and animals from the first; the same materials in the same proportions that were selected by the earliest trees for their composition are chosen now;

and in form and function the last animal is a precise copy of the first of his race.

If we attempt to trace a particle of matter, we shall find its wanderings endless. Annihilation is a term which is not applicable to material things. Matter is never destroyed; it rarely rests. Oxygen, for instance, the most important constituent of our atmosphere, is the combining element of all things, the medium of communication between the kingdoms of Nature, the agent of the interchanges that are continually taking place among all created things. Oxygen keeps life in man, by combining with his blood at every inhalation; it is absorbed by flowers, to be employed in the perfection of the fruit; many minerals are incapable of the various uses of society, until oxygen has attacked and united with them. It gives us lime and soda, the oil of vitriol, and common salt; the mineral pigments in common use are impossible without it; and the beautiful colors of our autumn leaves are due to the combination of oxygen with their juices. It enters into all plans and operations with a helping hand; animals and plants owe their lives to it; but when the shadow of death begins to fall upon them, it is as ready to aid in their destruction. Like calumny, which blackens whatsoever is suspected, oxygen pounces upon the failing and completes their ruin. The processes of fermentation and putrefaction cannot commence in any substance, until it has first taken oxygen into combination. Thus, cans of meat, hermetically sealed, with all the air first carefully expelled, undergo no change so long as the air does not get access to them. If the minutest opening remain, the oxygen of the atmosphere combines with the contents of the can, and fermentation or putrefaction follows. Rust, which takes the keen edge from the knife, is only another name for oxydation: keep the knife bright, and no oxygen dares touch it; but the slightest blemish is made a loophole for the entrance of the ever-watchful enemy, who never again leaves it until its destruction is complete.

All the elements have a great love of society; they cannot live alone; they have their likes and their dislikes; they contract alliances which endure for a time, but are dissolved in favor of stronger attractions.

We have mentioned the names of several natural elements. Let us see what they are, and what they have to do with man and the kingdoms of Nature. Beginning with man, let us see what becomes of him in course of time, what physical metamorphoses he undergoes, to what vile but excellent uses he is put.

That which forms the bone and muscle of a man this year may be upon his own table in the shape of potatoes or peaches one summer later. When Hamlet talked of turning the clay of Alexander into the bung of a beer-barrel, he spoke the simple truth. In that great play, Shakspeare appears to have had the transformations of material things much in his mind; for we find him alluding, in several passages, to the reciprocity which subsists between the elements of animate and inanimate things, and between the different members of the same kingdom;-as when, in conversation with the king about the dead Polonius, he makes Hamlet say, "A man may fish with the worm that hath eat of a king, and eat the fish that hath fed of the worm"; or where, over the grave of Ophelia, he traces the two ancient heroes back to their mother earth, in words some of which we have quoted.

The ancient mythology, which shadowed forth some truth in all its fables, turned these facts of Nature to its purpose. The gods of Greece, when they saw fit to remove a human being from life, sometimes reproduced him in another form of beauty, without any intermediate stages of decay. Apollo seemed to have a particular fancy for planting the boys and girls whom he had loved where he might enjoy their fragrant society. Thus, a boy named Cyparissus, who had the misfortune to kill a favorite deer, was so unwilling to be consoled, that he besought Apollo to make his mourning perpetual; and the kind god changed him

into a cypress, which is still a funereal tree. The modest virgin Daphne, who succeeded in escaping the violence of his passion, was transformed into a laurel, which is ever green and pure. And the sweet youth Hyacinthus, beloved of Apollo, being accidentally killed by a quoit which the god of day was throwing, that divinity, in his grief, caused those sweet flowers which bear his name to spring from his blood, where it fell upon the ground. It is only in the annihilation of the intervals of time between different forms of existence that these old metamorphoses, which Ovid relates, are fabulous. If our readers will bear us company a few steps, through ways which shall have diversions enough to forbid weariness, we will endeavor to satisfy them that these apparent fables are very near to every-day truths. We must begin with some plain statements.

The air which we expel from the lungs at every breath has a large proportion of carbonic acid. Let a man be shut up in an air-tight room for a day, and he will have changed nearly all the oxygen in it into this carbonic acid, and rendered it unfit for animal life. Dogs, cats, and birds would die in it. But, poisonous as it is to man and other animals, it is a feast to plants. They want it all day and every day; not in the night,— at that time they have a taste for oxygen. This effete air, which men and animals exhale, so charged with carbonic acid, the plants drink in through every pore. They take it from the mouth of man, appropriate it to their daily uses, and in time render it back to him mingled with other ingredients in wholesome fruit. Carbonic acid is death when it combines with the blood, as it does when we inhale it; but not so when it enters the stomach in small quantities. One inspiration of it is enough to make us dizzy,as when we enter an old well or stoop over a charcoal fire; but a draught of water fully charged with it is exhilarating and refreshing, as we know by repeated experiences at marble fountains that meet us on so many city-corners.

If plants had souls, they would be pure ones, since they can bear such contamination and not be harmed,-nay, since even from such foul food as we give them they can evolve results so beautiful. We give them our cast-off and worn-out materials, and they return us the most beautiful flowers and the most luscious fruits.

Beside carbonic acid, there are two other principal materials, which are every day passing off in an effète state, though capable of being transferred to the uses of plants. But when an animal dies, the whole substance is then at Nature's disposal. We must set aside a great deal of it for the ants and flies, who will help themselves in spite of us. If any one has never seen a carcass rapidly disappearing under the steady operations of the larvæ of the flesh-fly, he has yet to learn why some flies were made. The ants, too, carry it off in loads larger, if not heavier, than themselves. But carcasses of animals may go to decay, undisturbed by the ravages of these useful insects. That is, the limited partnership of Oxygen, Hydrogen, & Co., under which they agreed to carry on the operations of sheep, fox, or fish, having terminated by the death of the animal, the partners make immediate use of their liberty and go off in inorganic form in search of new engagements, leaving sulphur, phosphorus, and the other subordinate elements of the animal, to shift for themselves. They were in the employ of a sheep; they will now carry on a man or an oak-tree, a colony of insects, or something else. Under the form of carbonate of ammonia, the four elements diffuse themselves through the air, or are absorbed by the earth, and offer themselves at once to the roots and leaves of the trees, as ready to go on with their vivifying operations as they were in behalf of the animals. There are some plants which seem not to be left to the chances of securing their nourishment from the carbonate of ammonia that the air and the soil contain, but are contrived so as to entrap living animals and hold them fast while they undergo decomposition,

[blocks in formation]

so that all their gases may be absorbed by them alone. Thus, "the little Sundew exudes a gluey secretion from the surface of its leaves, which serves to attract and retain insects, the decay of whose bodies seems to contribute to its existence." And the onæa, or Venus's Fly-trap of the Southern States, has some leaves which fold together upon any insect that alights upon their upper surface; and by means of a row of long spines that fringes the leaves, they pre-' vent his escape. The more active the struggles of the captive, the closer grows the hold of the leaf, and speedily destroys him. The plant appears to derive nutriment from the decomposition of its victims. "Plants of this kind, which have been kept in hot-houses in England, from which insects were carefully excluded, have been observed to languish, but were restored by placing little bits of meat upon their traps,- the decay of these seeming to answer the same purpose."

The four elements already referred to are by no means all the material ingredients of animal bodies. There are, also, phosphorus, lime, magnesia, soda, sulphur, chlorine, and iron; and if you believe some chemists, there is hardly a mineral in common use that may not be found in the human body. We doubt, however, whether lead, arsenic, and silver are there, without the intervention of the doctor.

What becomes of the phosphorus and the rest, when an animal dies? Oh, they take up new business, too. They are as indispensable to the animal frame as the four most prominent ingredients. We eat a great deal of bread and meat, and a little salt, but the little salt is as important to continued life as the large bread. There is hardly a tissue in the body from which phosphorus, in combination with lime, is absent; so that the composition of lucifer-matches is by no means the most important use of this element. The luminous appearance which some putrefying substances, particularly fish, present at night, is due to the slow combustion of phosphorus which takes

place as this element escapes into the air from the decomposing tissues.

The necessity for the steady supply of phosphorus and lime to the body is the cause of the popularity of Mapes's superphosphate of lime as a manure. The farmers who buy it, perhaps, do not know that their bones and other parts are made of it, and that this is the reason they must furnish it to their land; for between the land and the farmer's bones are two or three other factories that require the same material. All the farmer knows is, that his grass and his corn grow better for the superphosphate. But what he has not thought of we will tell you, that man finds his phosphate of lime in the milk and meat of the cow, and she finds her supply in the grass and corn, which look to the farmer to see that their stock of this useful mineral compound does not fall short. Thus in milk and meat and corn, which constitute so large a part of our diet, we have always our phosphate of lime. There are many other sources whence we can derive it, but these will do for the present. And thus, when an animal dies and has no further use for his phosphate of lime, it is washed into the soil around, after decomposition of the body has set it free, and goes to make new grass and corn. Bone-earth (pounded bones) is a common top-dressing for grass-lands.

A small proportion of sulphur is found in flesh and blood. We prove its presence in the egg by common experience. An egg-from which it escapes more easily than from flesh-discovers its presence by blackening silver, as every housekeeper knows, whose social position is too high for bone egg-spoons or too low for gold ones. This passion which sulphur entertains for silver is very strong, as every one knows who has ever been under that wholesome discipline which had its weekly recurrence at the delightful institution of Dotheboy's Hall; and what Anglo-Saxon ever grew up, innocent of that delectable vernal medicine to which we refer? Has he not found all the silver change in his pocket grow black, suggesting very

unpleasant suspicions of bogus coin? The sulphur, being more than is wanted in the economy of the system, has made its escape through every pore in his skin, and, of course, fraternizes with the silver on its way. But it was of the sulphur which is natural to the body and always found there that we were speaking. When the animal dies, and the vital forces give way to chemical affinities, when the phosphorus and the rest take their departure, the sulphur, too, finds itself occupation in new fields of duty.

Chlorine and sodium, two more of the elements of animal structures, produce, in combination, common salt, without which our food would be so insipid, that we have the best evidence of its being a necessary article of diet. The body has many uses for salt. It is found in the tears, as we are informed by poets, who talk of “briny drops” and “saut, saut tears"; though why there, unless to keep the lachrymal fluid from spoiling, in those persons who bottle up their tears for a long time, we cannot divine.

Perhaps we had better take the rest into consideration together, the magnesia and iron, and whatever other elements are found in the body. Though some of them are there in minute quantities, the structure cannot exist without them, – and for their constant and sufficient supply our food must provide.

To see what becomes of all these materials after we have done with them, we must extend our inquiries among the articles of ordinary diet and ascertain from what sources we derive the several elements.

It has been sometimes believed that none but animal food contains all the elements required for the support of life. Thanks to Liebig, we have discovered that vegetable substances also, fruits, grains, and roots, contain them all, and, in most cases, in very nearly the same proportions as they are found in animals. We are not lecturing on dietetics; therefore we will not pause to explain why, although either bread or meat alone contains the various materials for flesh and

bone, it is better to combine them than to endeavor to subsist on one only. .

All

Whither, then, go these elements when man has done with them? The answer is, All Nature wants them. Every plant is ready to drink them up, as soon as they have taken forms which bring them within its reach. As gases, they are inhaled by the leaves, or, dissolved in water, they are drunk up by the roots. plants have not the same appetites, and therefore they can make an amicable division of the supply. Grasses and grains want a large proportion of phosphate of lime, which they convert into husks. Peas and beans have little use for nitrogen, and resign it to others. Cabbages, cauliflowers, turnips, and celery appropriate a large share of the sulphur.

The food of plants and that of animals have this great difference: plants take their nourishment in inorganic form only; animals require to have their food in organic form. That is, all the various minerals, singly or combined, which compose the tissues of plants and animals,-carbon, hydrogen, phosphorus, and the rest, which we have already named,-are taken up by plants in mineral form alone. The food of animals, on the other hand, consists always of organized forms. There is no artificial process by which oxygen, carbon, and hydrogen can be brought into a form suitable for the nourishment of animals. As oxygen, carbon, and hydrogen, they are not food, will not sustain our life, and human art cannot imitate their nutritious combinations. tificial fibrine and gluten (organic principles) transcend our power of contrivance as far as the philosopher's stone cluded the grasp of the alchemists. We know exactly how many equivalents of oxygen, hydrogen, carbon, and nitrogen enter into the composition of each of the animal elements; but we can no more imitate an organic element than we can form a leaf. What we cannot do the vegetable world does for us. Thus we see why it was necessary that the earth should be clothed with vegetation before animals could be introduced. A field

Ar

mouse dies and decays, and its elements are appropriated by the roots around its grave; and we can easily imagine the next generations of mice, the children and grandchildren of the deceased rodent, feasting off the tender bark which was made out of the remains of their parent. The soil of our gardens and the atmosphere above it are full of potential tomatoes, beans, corn, potatoes, and cabbages, even of peaches of the finest flavor, and grapes whose aroma is transporting.

Plants, as well as animals, have their peculiar tastes. Cut off the supply of phosphate of lime from a field of corn, and it will not grow. You can easily do this by planting the same land with corn for three or four successive years, and your crop will dwindle away to nothing, unless you supply the ground every year with as much of the mineral as the corn takes away from it. All plants have the power of selecting from the soil the materials necessary to their growth; and if they do not find them in the soil, they will not grow. It is now a familiar fact, that, when an old forest of deciduous trees has been felled, evergreens will spring up in their places. The old oaks, hickories, and beeches, as any observer would discover, pass their last years in repose, simply putting out their leaves and bearing a little fruit every year, but making hardly any new wood. An oak may attain to nearly its full size, in spread of branches, in its first two hundred years, and live for five or six hundred years longer in a state of comparative rest. It seems to grow no more, simply because it has exhausted too much of the material for its nourishment from the ground around its roots. At least, we know, that, when we have cut it down, not oaks, but pines, will germinate in the same soil,-pines, which, having other necessities and taking somewhat different food, find a supply in the ground, untouched by their predecessor. Hence the rotation of crops, so much talked of by agriculturists. Before the subject was so well understood, the ground was allowed to lie fallow for

« ZurückWeiter »