### Was andere dazu sagen -Rezension schreiben

Es wurden keine Rezensionen gefunden.

### Inhalt

 Abschnitt 1 1 Abschnitt 2 70 Abschnitt 3 97 Abschnitt 4 155 Abschnitt 5 163 Abschnitt 6 167 Abschnitt 7 172 Abschnitt 8 173
 Abschnitt 10 222 Abschnitt 11 223 Abschnitt 12 224 Abschnitt 13 225 Abschnitt 14 242 Abschnitt 15 246 Abschnitt 16 255 Abschnitt 17 256

 Abschnitt 9 197
 Abschnitt 18 277

### Beliebte Passagen

Seite 22 - ... is less than the sum but greater than the difference of the radii ; (4) is equal to the difference of the radii ; (5) is less than the difference of the radii.
Seite 20 - The sum of the perpendiculars dropped from any point in the base of an isosceles triangle to the legs, is equal to the altitude upon one of the arms.
Seite 144 - The line that joins the feet of the perpendiculars dropped from the extremities of the base of an isosceles triangle to the opposite sides is parallel to the base.
Seite 20 - The sum of the perpendiculars from any point within an equilateral triangle to the three sides is equal to the altitude of the triangle (Fig.
Seite 40 - Prove that the locus of the vertex of a triangle, having a given base and a given angle at the vertex, is the arc which forms with the base a segment capable of containing the given angle (§ 318).
Seite 137 - Find the angle subtended at the centre of a circle by an arc whose length is equal to the radius of the circle.
Seite 6 - If the diagonals of a quadrilateral bisect each other, the figure is a parallelogram.
Seite 96 - The areas of two triangles which have an angle of the one equal to an angle of the other are to each other as the products of the sides including the equal angles. A D A' Hyp. In triangles ABC and A'B'C', To prove AABC A A'B'C' A'B' x A'C ' Proof. Draw the altitudes BD and B'D'.
Seite 75 - ... by four times the square of the line joining the middle points of the diagonals.
Seite 5 - ABC and ABD are two triangles on the same base AB, and on the same side of it, the vertex of each triangle being without the other. If AC equals AD, show that BC cannot equal BD (§ 154).